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Least-squares-based lattice Boltzmann method: A meshless approach for simulation
of flows with complex geometry
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A version of lattice Boltzmann method~LBM ! is presented in this work, which is derived from the standard
LBM by using Taylor series expansion and optimized by the least squares method. The method is basically
meshless, and can be applied to any complex geometry and nonuniform grids. It can also be applied to different
lattice models. The proposed method explicitly updates the distribution functions at mesh points by an alge-
braic formulation, in which the relevant coefficients are precomputed from the coordinates of mesh points. We
have successfully applied this method to simulate many two-dimensional incompressible viscous flows. The
numerical results are very accurate, and the computational time needed is much less as compared with other
existing methods. In this paper, we mainly show the method.

DOI: 10.1103/PhysRevE.64.045701 PACS number~s!: 45.50.2j, 47.11.1j
o

ith
e
se

ar

th
a
an
f

u

e

u
B
th
n

,
d
a

-

,

ex-

d

ch-

vel

,

ed
e
sity,
his
esh
es
es
-

In recent years, the lattice Boltzmann method~LBM ! has
become an efficient and alternative tool for simulation
complex flows@1–6#. Due to uniformity of the lattice, the
standard LBM is usually applied to the simple geometry w
uniform grid. As we know, practical problems may involv
complex geometry with curved boundaries. For such ca
the standard LBM cannot be applied directly.

Currently, there are two ways to improve the stand
LBM so that it can be applied to complex problems@2–6#.
One is the interpolation-supplemented LBM~ISLBM! pro-
posed by He and his colleagues@2–3#. In this method, inter-
polation is applied at every time step in order to obtain
distribution function at the grid point. So, the computation
effort by this method is very large as compared to the st
dard LBM. The other scheme is based on the solution o
differential lattice Boltzmann equation~LBE!. For complex
problems, the differential LBE can be solved in the comp
tational space with the help of coordinate transformation@4#.
The differential LBE can also be solved by the finite volum
algorithm@5–6#. As showed by Chen@5#, the finite volume-
based LBM can exactly obey the conservation laws.
should be indicated that efficient numerical approaches s
as upwind schemes are needed to solve the differential L
in order to get the stable solution. As a consequence,
computational efficiency greatly depends on the selected
merical scheme.

In this work, we will present a new version of LBM
which seems to be more efficient than the existing metho
Let us start with the standard LBM. The two-dimension
standard LBE with BGK approximation can be written as

f a~x1eaxdt,y1eaydt,t1dt !5 f a~x,y,z!1@ f a
eq~x,y,t !

2 f a~x,y,t !#/t, ~1!

where t is the single relaxation timef a is the distribution
function along thea direction, f a

eq is its corresponding equi
librium state,d t is the time step, andea is the particle ve-
locity in thea direction. The discrete velocitiesea(eax ,eay)
and the equilibrium distributionf a

eq can be found in Ref.@1#.
For a uniform lattice,dx5eax•d t , dy5eay•d t . So, ~x
1eax•d t , y1eay•d t! is on the grid point. In other words
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Eq. ~1! can be used to update the distribution functions
actly at the grid points. However, for a nonuniform grid,~x
1eax•d t , y1eay•d t! is usually not at the grid point~x
1dx, y1dy!. To get the distribution function at the gri
point ~x1dx, y1dy! and at the time levelt1d t , we need to
apply the Taylor series expansion or other interpolation te
niques such as the one used by Heet al. @2,3#. In this work,
the Taylor series expansion is used. Note that the time le
for the position~x1eaxd t , y1eayd t! and the grid point~x
1dx, y1dy! is the same, that is,t1d t . So, the expansion in
the time direction is not necessary.

We will use Fig. 1 to illustrate our method. For simplicity
we let pointA represent the position (xA ,yA), point A8 rep-
resent the position~xA1eaxd t , yA1eayd t!, and pointP rep-
resent the position (xP ,yP). Using Eq.~1!, we can get the
distribution function at the positionA8 as

f a~A8,t1dt !5 f a~A,t !1@ f a
eq~A,t !2 f a~A,t !#/t. ~2!

For the general case,A8 may not coincide with the mesh
point P. In the numerical simulation, we are only interest
in the distribution function at the mesh point for all the tim
levels. So, the macroscopic properties such as the den
flow velocity can be evaluated at every mesh point. In t
case, we need to obtain the distribution function at the m
point P. This can be done by applying the Taylor seri
expansion in the spatial direction only. With Taylor seri
expansion,f a(A8,t1dt) can be approximated by the corre
sponding function and its derivatives at the mesh pointP as

FIG. 1. Configuration of particle movement along thea
direction.
©2001 The American Physical Society01-1
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f a~A8,t1dt!5 f a~P,t1dt !1DxA

] f a~P,t1dt !

]x

1DyA

] f a~P,t1dt!

]y
1

1

2
~DxA!2

]2f a~P,t1dt!

]x2

1
1

2
~DyA!2

] f a~P,t1dt !

]y2

1DxADyA

]2f a~P,t1dt !

]x]y

1O@~DxA!3,~DyA!3#, ~3!

where DxA5xA1eaxdt2xP , DyA5yA1eaydt2yP . Note
that the above approximation has a truncation error of
third order. Substituting Eq.~3! into Eq. ~2! gives

f a~P,t1dt !1DxA

] f a~P,t1dt !

]x
1DyA

] f a~P,t1dt !

]y

1
1

2
~DxA!2

]2f a~P,t1dt !

]x2 1
1

2
~DyA!2

]2f a~P,t1dt !

]y2

1DxADyA

]2f a~P,t1dt !

]x]y

5 f a~A,t !1@ f a
eq~A,t !2 f a~A,t !#/t. ~4!

It is indicated that Eq.~4! is a differential equation. Solving
this equation can provide the distribution functions at all
mesh points. In this work, we go further to develop a so
tion procedure. In fact, our development is inspired from
Runge-Kutta method. As we know, the Runge-Kutta meth
is developed to improve the Taylor series method in the
lution of ordinary differential equations~ODEs!. As in Eq.
~4!, Taylor series method involves evaluation of different o
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ders of derivatives to update the functional value at the n
time level. For a complicated expression of given ODEs t
application is very difficult. To improve the Taylor serie
method, the Runge-Kutta method evaluates the functio
values at some intermediate points and then combines t
~through the Taylor series expansion! to form a scheme with
the same order of accuracy. With this idea in mind, we lo
at Eq. ~4!. We know that at the time levelt1dt, the distri-
bution function and its derivatives at the mesh pointP are all
unknowns. So, Eq.~4! has six unknowns in total. To solv
for the six unknowns, we need six equations. However,
~4! just provides one equation. We need additional five eq
tions to close the system. As shown in Fig. 1, we can see
along thea direction, the particles at five mesh pointsP,B,
C,D,E at the time levelt will move to the new positions
P8,B8,C8,D8,E8 at the time levelt1dt. The distribution
functions at these new positions can be computed thro
Eq. ~1!, which are given below:

f a~P8,t1dt !5 f a~P,t !1@ f a
eq~P,t !2 f a~P,t !#/t, ~5!

f a~B8,t1dt !5 f a~B,t !1@ f a
eq~B,t !2 f a~B,t !#/t, ~6!

f a~C8,t1dt !5 f a~C,t !1@ f a
eq~C,t !2 f a~C,t !#/t, ~7!

f a~D8,t1dt !5 f a~D,t !1@ f a
eq~D,t !2 f a~D,t !#/t, ~8!

f a~E8,t1dt !5 f a~E,t !1@ f a
eq~E,t !2 f a~E,t !#/t. ~9!

Using the Taylor series expansion,f a(P8,t1dt), f a(B8,t
1dt), f a(C8,t1dt), f a(D8,t1dt), f a(E8,t1dt), in the
above equations can be approximated by the function an
derivatives at the mesh pointP. As a result, Eqs.~5!–~9! can
be reduced to
f a~P,t1dt !1DxP

] f a~P,t1dt !

]x
1DyP

] f a~P,t1dt !

]y
1

1

2
~DxP!2

]2f a~P,t1dt !

]x2 1
1

2
~DyP!2

]2f a~P,t1dt !

]y2

1DxPDyP

]2f a~P,t1dt !

]x]y
5 f a~P,t !1@ f a

eq~P,t !2 f a~P,t !#/t, ~10!

f a~P,t1dt !1DxB

] f a~P,t1dt !

]x
1DyB

] f a~P,t1dt !

]y
1

1

2
~DxB!2

]2f a~P,t1dt !

]x2 1
1

2
~DyB!2

]2f a~P,t1dt !

]y2

1DxBDyB

]2f a~P,t1dt !

]x]y
5 f a~B,t !1@ f a

eq~B,t !2 f a~B,t !#/t, ~11!

f a~P,t1dt !1DxC

] f a~P,t1dt !

]x
1DyC

] f a~P,t1dt !

]y
1

1

2
~DxC!2

]2f a~P,t1dt !

]x2 1
1

2
~DyC!2

]2f a~P,t1dt !

]y2

1DxC DyC

]2f a~P,t1dt !

]x]y
5 f a~C,t !1@ f a

eq~C,t !2 f a~C,t !#/t, ~12!

f a~P,t1dt !1DxD

] f a~P,t1dt !

]x
1DyD

] f a~P,t1dt !

]y
1

1

2
~DxD!2

]2f a~P,t1dt !

]x2 1
1

2
~DyD!2

]2f a~P,t1dt !

]y2

1DxDDyD

]2f a~P,t1dt !

]x]y
5 f a~D,t !1@ f a

eq~D,t !2 f a~D,t !#/t, ~13!
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f a~P,t1dt !1DxE

] f a~P,t1dt !

]x
1DyE

] f a~P,t1dt !

]y
1

1

2
~DxE!2

]2f a~P,t1dt !

]x2 1
1

2
~DyE!2

]2f a~P,t1dt !

]y2

1DxEDyE

]2f a~P,t1dt !

]x]y
5 f a~E,t !1@ f a

eq~E,t !2 f a~E,t !#/t, ~14!

where

DxP5eaxdt, DyP5eaydt,

DxB5xB1eaxdt2xP , DyB5yB1eaydt2yP ,

DxC5xC1eaxdt2xP , DyC5yC1eaydt2yP ,

DxD5xD1eaxdt2xP , DyD5yD1eaydt2yP ,

DxE5xE1eaxdt2xP , DyE5yE1eaydt2yP .
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Equations~4!, ~10!–~14! form a system to solve for six un
knowns. Now, we define

gi5 f a~xi ,yi ,t !1@ f a
eq~xi ,yi ,t !2 f a~xi ,yi ,t !#/t, ~15!

$si%
T5$1,Dxi ,Dyi ,~Dxi !

2/2,~Dyi !
2/2,DxiDyi%, ~16!

$V%5$ f a ,] f a /]x,] f a /]y,]2f a /]x2,]2f a /]2y,]2/]x]yT%T,
~17!

wheregi is the post-collision state of the distribution fun
tion at thei th point and the time levelt,$si%

T is a vector with
six elements formed by the coordinates of mesh points,$V% is
the vector of unknowns at the mesh pointP, which also has
six elements. Our target is to find its first elementV1
5 f a(P,t1dt). With above definitions, Eqs.~4!, ~10!–~14!
can be written as

gi5$si%
T$V%5(

j 51

6

si , jVj , i 5P,A,B,C,D,E, ~18!

wheresi , j is the j th element of the vector$si%
T andVj is the

j th element of the vector$V%. Equation system~18! can be
put into the following matrix form:

@S#$V%5$g%, ~19!

where$g%5$gP ,gA ,gB ,gC ,gD ,gE%T and @S#5@si , j #. Note
that the matrix@S# can be computed once and stored for t
application of Eq.~19! at all time levels. In practical appli
cations, it was found that the matrix@S# might be singular or
ill conditioned. To overcome this difficulty and make th
method be more general, we propose the following le
squares-based LBM.

Equation~18! has six unknowns~elements of the vecto
$V%!. If Eq. ~18! is applied at more than six mesh points, th
the system is over determined. For this case, the unkn
vector can be decided from the least squares method.
simplicity, let the mesh pointP be represented by the inde
i 50, and its adjacent points be represented by indei
04570
st

n
or

51,2, . . . ,M , whereM is the number of neighboring point
aroundP and it should be larger than 5. At each point, w
can define an error in terms of Eq.~18!, that is,

erri5gi2(
j 51

6

si , jVj , i 50,1,2, . . . ,M . ~20!

The square sum of all the errors is defined as

E5(
i 50

M

erri
25(

i 50

M S gi2(
j 51

6

si , jVj D 2

. ~21!

To minimize the errorE, we need to set]E/]Vk50,k
51,2, . . . ,6,which leads to

@S#T@S#$V%5@S#T$g%, ~22!

where @S# is a @(M11)36#-dimensional matrix, which is
given as

FIG. 2. Comparison of streamlines for flow in a polar cav
(Re5350). ~a! Present method.~b! NS Solver given by Zanget al.
@7#.
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@S#53
1 Dx0 Dy0 ~Dx0!2/2 ~Dy0!2/2 Dx0Dy0

1 Dx1 Dy1 ~Dx1!2/2 ~Dy1!2/2 Dx1Dy1

- - - - - -

- - - - - -

- - - - - -

1 DxM DyM ~DxM !2/2 ~DyM !2/2 DxMDyM

4
~M11!36
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and$g%5$g0 ,g1 , . . . ,gM%T.
The Dx andDy values in the matrix@S# are given as

Dx05eaxdt,Dy05eaydt, ~23a!

Dxi5xi1eaxdt2x0 , Dyi5yi1eaydt2y0 ,

for i 51,2, . . . ,M . ~23b!

Clearly, when the coordinates of mesh points are given,
the particle velocity and time step size are specified, the
trix @S# is determined. Then from Eq.~22!, we obtain

$V%5~@S#T@S# !21@S#T$g%5@A#$g%. ~24!

Note that@A# is a @63(M11)#-dimensional matrix. From
Eq. ~24!, we can have

f a~x0 ,y0 ,t1dt !5V15 (
k51

M11

a1,kgk21 , ~25!

wherea1,k are the elements of the first row of the matrix@A#,
which are precomputed before the LBM is applied. Note t
the functiong is evaluated at the time levelt. So, Eq.~25! is
actually an explicit form. In the above process, there is
requirement for the selection of neighboring points. In oth
words, Eq.~25! is nothing to do with the mesh structur
Thus, we can say that Eq.~25! is basically a meshless form
Although the proposed method has meshless feature,
recommended to use a structured grid. This is because in
method, only the coordinates of mesh points are involv
When a structured grid is used, it is much easy to define
coordinates of mesh points. Furthermore, thea direction in
Eq. ~25! can be any direction. This implies that Eq.~25! can
04570
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be uniformly applied to the different lattice models. We ha
successfully applied Eq.~25! to the D2Q9 model and the
D2Q7 model, and the obtained results between these
models are exactly the same.

The implementation of the boundary condition for th
new method is the same as the standard LBM. That is,
boundary point, the distribution functions along all outwa
directions ~point from the flow field to the boundary! are
computed through Eq.~25!, while the distribution functions
along all inward directions~point from the boundary to flow
field! are determined by the bounce back rule. Using E
~25!, we have simulated many incompressible viscous flo
The obtained numerical results are very accurate and
convergence is very fast. The theoretical analysis and
tailed implementation of our method will be shown in th
full paper. Here, we only show some results for simulation
a polar cavity flow~inner surface has a rotational velocity!
obtained by the present method. Figure 2 compares
streamlines obtained by the present method using a non
form mesh of 81381 and the conventional Navier-Stoke
solver given by Zanget al. @7#. Very good agreement is
achieved in the size of the vortices and location of the se
ration and reattachment points. We have also done the
flow’’ simulation in a square cavity by using nonuniform
meshes, and found that when the uniform density and z
velocity are set at the beginning, the maximum velocity ma
nitude and the relative difference of the density can be
mained in the order of 1028 for all times. This implies that
the balance condition in the method is well kept. Through
application, we may conclude that the proposed method i
efficient approach for simulation of flows involving comple
geometry. It is especially useful for a nonuniform grid whe
the mesh is clustered towards the boundary.
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